Так учащиеся обнаруживают, что первые два способа – это, фактически, подбор конкретных пар (х, у), а третий есть реализация общего способа поиска таких пар. Средством, которое позволяет найти способ, является преобразование уравнения к виду или .
Таким образом, на этом шаге учащиеся обоснованно выбирают способ нахождения решений в виде указания пар чисел (х, ), (х=, у).
Оценка способа нахождения решений линейного уравнения с двумя неизвестными
Теперь перед учащимися ставиться задача оценить, решили ли они уравнение ax+by+c=0. Для этого они должны обосновать, что все возможные решения линейного уравнения с двумя неизвестными записываются в виде (х, ), (х=, у). Таким образом, учащиеся отвечают на вопросы: действительно ли полученные пары являются решениями? Описывают ли они все возможные значения х и у? Для ответа на первый вопрос ученики могут обратиться к выводам, полученным на подготовительном этапе: чтобы проверить являются ли полученные пары решениями линейного уравнения необходимо подставить их в это уравнение. В результате получатся верные тождества, что и означает, что решения найдены верно. Для ответа на второй вопрос требуется принять соглашение о том, что если нет явных ограничений на значения х и у, то они могут быть любыми. Тогда парами (х, ), (х=, у) описываются все возможные корни уравнения.
Учащиеся уточняют представление о решении линейных уравнений. При решении линейного уравнения с одним неизвестным учащиеся находили одно решение, при поиске натуральных решений линейного уравнения с двумя неизвестными они подбирали подходящие, при решении задачи нахождения всех решений они указали способ того, как можно найти бесконечно много подходящих пар чисел. Таким образом, для того, чтобы решить уравнение необходимо не найти (перебрать) решения как это было, а указать способ их нахождения.
В результате прохождения этапа у учащихся появляется новое понимание термина "решить уравнение". Так же они научаться обосновывать, что уравнение решено, т.е. что пары чисел (х, ) и (х=, у) описывают все возможные решения линейного уравнения с двумя неизвестными
Отметим, что данное задание и задание подготовительного этапа обеспечивают некоторую пропедевтику введения области определения функции, поскольку в каждом из них оговорены условия существования независимой переменной.
Выделение понятия функция "в чистом виде"
Введение определения "линейная функция"
Цель этого шага - ввести представления о линейной функции, как новом объекте изучения. Перед учащимися ставится задача: понять текст и соотнести его содержание со своим опытом. Текст, предлагаемый учащимся, посвящен понятию линейной функции, в нем формулируется определение линейной функции, k и b – произвольные числа.
Содержанием работы учащихся на данном этапе и основным затруднением является соотнесение формул и y=kx+b, и обнаружение того, что они задают один и тот же объект. Сравнивая и анализируя запись линейного уравнения с двумя неизвестными ax+by+c=0 и вид линейной функции y=kx+b, учащиеся получают представление о связи между этими объектами (функцию можно получить из уравнения выполняя тождественные преобразования). В ходе работы с текстом учащиеся замечают неравноправие неизвестных х и у в выражениях х=, , что закрепляется специальными терминами – зависимая и независимая переменные.
Другая информация:
Способности как психологический аспект
Одной из самых сложных и интересных проблем психологии является проблема индивидуальных различий. Трудно назвать хоть одно свойство, качество, черту человека, которое не входило бы в круг этой проблемы. Психические качества и свойства людей формируются в жизни, в процессе обучения, воспитания, деят ...
Модель и характеристика классного руководителя
Модель (от лат. Modulus – мера, образец) – любой образ, аналог (мысленный или условный) какого-либо объекта, процесса или явления («оригинала» данной модели), используемый в качестве его «заместителя», «представителя». Исследовательская компетентность – знания, опыт в области педагогического исслед ...
Совершенствование форм обучения в процессе реализации межпредметных связей
Использование межпредметных связей в практике обучения вызвало появление новых форм его организации, таких, как урок с межпредметными связями, комплексный семинар, комплексные экскурсии, межпредметные конференции, комплексные факультативы и др. при этом классно – урочная система, принятая в советск ...