График линейной функции – это "способ представления зависимости, который позволяет для каждого значения х просто увидеть готовое значение у без всяких вычислений" . График выступает в качестве геометрической модели зависимости, тогда как формула – алгебраическая модель. В курсе представлен переход от одного вида моделей к другому. Поскольку авторы говорят о неоднозначных зависимостях, то линейными функциями можно описать любые прямые, непараллельные оси ОY. На основании этого переход ГЛФ ↔ЛФ восстанавливаются однозначно.
Таким образом схема анализа способа введения понятия функции в курсе С.Ф. Горбова изображена на рис.1.3.
Историческая реконструкция понятия функции, проведенная в §1 настоящей главы, позволила выделить этапы его развития: 1) этап становления понятия функции как зависимости рядов величин, а затем переменных; 2) разделение однозначных и неоднозначных зависимостей; 3) введение понятия области определения. При этом важную роль играл вопрос о соотнесении геометрического образа и аналитической формы задания функции.
В ходе восстановления логики программы мы выделили два объекта для введения понятия линейной функции: линейное уравнение с двумя неизвестными и его график. Логика изложения представлена четырьмя блоками: раскрытие связи линейного уравнения и его графика; оформление связи линейной функции с ее геометрической моделью; введение области определения функции и рассмотрение нового способа построения прямой. Последние два блока не имеют логических связок с предыдущими. Автор рассматривает функцию как частный случай уравнения, при этом, не раскрывая представление о функции как зависимости между переменными. Мы попытались установить логические связи между геометрическими и аналитическими интерпретациями линейной функций и линейного уравнения, и увидели, что связи не являются полными. Это приводит к математическим неточностям, например, к тому, что прямая у=с не является графиком линейной функции. Другие виды функций получаются путем обобщения формы записи линейной функции.
В программе МАРО понятие функции построено в соответствии с его историческим развитием, что позволяет авторам работать с отношением между аналитической и геометрической формами задания. Связи между понятиями линейное уравнение, линейная функция и их графики восстанавливаются практически полностью, отсутствуют лишь явные переходы между алгебраическими формами задания линейной функции и линейного уравнения. В данном курсе авторы работают с понятием зависимости вообще, с любыми видами функций, рассматриваются также и неоднозначные зависимости. В силу этого линейная функция представлена лишь как частный случай однозначной зависимости.
Другая информация:
Упражнения для подготовки к единому государственному экзамену
по Бабайцевой В.В
Изучение раздела “Фразеология” представляет для учащихся определенную сложность. Причинами являются: 1) низкая речевая культура учащихся; 2) бедный словарный запас; 3) явление фразеологии само по себе сложное; 4) большое количество фразеологизмов в русском языке (несколько десятков тысяч); 5) на из ...
Анализ дистанционного обучения взрослых
Чтобы провести анализ возможностей дистанционного обучения взрослых в Новосибирской области, мною была использована система Интернет, где с помощью поисковой системы анализировался материал, связанный с дистанционным образованием в городе Новосибирск. В итоге было выяснено, что в нашей области дист ...
Выявление уровня сформированности обществоведческих знаний у
третьеклассников
В ноябре 2009 года был проведен констатирующий эксперимент. В исследовании принимали учащиеся МОУ «Воскресенская средняя общеобразовательная школа» – экспериментальный 3 класс, всего 12 человек; учащиеся МОУ «Климовская средняя общеобразовательная школа» – контрольный 3 класс, всего 16 человек. В э ...