7. Парабола.
Рис. 10
Парабола
Определение. Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой, также расположенной в рассматриваемой плоскости.
Указанная в определении точка F называется фокусом параболы, а фиксированная прямая - директрисой параболы (Слово директриса означает направляющая).
Рис. 11
Для вывода канонического уравнения параболы выберем начало О декартовой системы координат в середине отрезка FD, представляющего собой перпендикуляр, опущенный из фокуса F на директрису (при этом фокус F не лежит на директрисе, ибо в противном случае точки плоскости, для которых были бы выполнены условия определения параболы, располагались на прямой, проходящей через F перпендикулярно директрисе, т. е. парабола выродилась бы в прямую.), а оси Ох и Оу направим так, как указано на рис.6.3.
Пусть длина отрезка FD равна р. Тогда в выбранной системе координат точка F имеет координаты (,0)Пусть М - точка плоскости с координатами (х, у). Обозначим через r расстояние от М до F, а через d - расстояние от М до директрисы (рис. 6.3). Согласно определению параболы равенство r=d(1.12) является необходимым и достаточным условием расположения точки М на-данной параболе. Так как
(1.13)
то, согласно (1.12), соотношение представляет собой необходимое и достаточное условие расположения точки М с координатами х и у на данной параболе. Поэтому соотношение (1.14) можно рассматривать как уравнение параболы. Путем стандартного приема «уничтожения радикалов» это уравнение приводится к виду
у2 = 2рх. (1.15)
Убедимся в том, что уравнение (1.15), полученное путем алгебраических преобразований уравнения (1.14), не приобрело новых корней. Для этого достаточно доказать, что для каждой точки М, координаты x и y которой удовлетворяют уравнению (1.15), величины r и d равны (выполнено соотношение (1.12)).
Из соотношения (1.15) вытекает, что абсциссы х рассматриваемых точек неотрицательны,
т.е. х 0. Для точек с неотрицательными абсциссами . Найдем теперь выражение для расстояния r от точки М до F. Подставляя у из выражения (1.15) в правую часть выражения для r (1.13) и учитывая, что х 0, найдем, что . Таким образом, для рассматриваемых точек r=d, т. е. они располагаются на параболе.
Уравнение (1.15) называется каноническим уравнением параболы. Величина р называется параметром параболы.
Свойства параболы
Рис. 12
1°. Парабола имеет только одну ось симметрии (ось параболы), в отличии от эллипса и гиперболы. Точка пересечения параболы с осью называется вершиной параболы. Действительно, в уравнении (1.15) величина у фигурирует в четной степени. Следовательно, если координаты х и у точки М удовлетворяют уравнению (1.15) (т. е. точка М располагается на параболе), то этому уравнению удовлетворяют координаты (х,-у) симметричной ей точки относительно оси Ох (рис. 6.8). Таким образом, если парабола задана своим каноническим уравнением (1.15), то осью этой параболы является ось Ох. Очевидно, вершиной параболы является начало координат.
2°. Вся парабола расположена в правой полуплоскости плоскости Оху. В самом деле, так как р>0, то уравнению (1.15) удовлетворяют координаты точек лишь с неотрицательными абсциссами. Такие точки располагаются в правой полуплоскости.
3°. Из рассуждений вытекает, что директриса параболы, определяемой каноническим уравнением (1.15), имеет уравнение (1.23)
4°. Любые две параболы подобны друг другу. Пусть у2 = 2рх и у2=2р*х - канонические уравнения этих парабол в декартовой системе Оху, y=kx - уравнение произвольной прямой, проходящей через О, а (х, у) и (х*,у*) - координаты точек пересечения этой прямой с параболами. Используя канонические уравнения, получим
Другая информация:
Учебный комплекс упражнений Бабайцевой В.В. для средней
общеобразовательной школы
По мнению С. И. Ожегова, комплекс – совокупность, сочетание каких – нибудь явлений, действий. В данном случае, комплекс – это совокупность упражнений направленных на формирование одной из составляющих языковедческой компетенции, т. е. обогащение словарного запаса учащихся средних классов. Комплекс ...
Опыт работы с использованием блочно-модульной технологии преподавания
истории
Прежде, чем внедрить в практику своей работы блочно- модульную технологию я в течение 2 лет проводила среди учащихся 5 – 9 классов анкету и выясняла, в чём причины трудностей на уроке. Причины трудностей на уроке № Что мешает учиться лучше 2002–2003 2003–2004 1. Недоступность учебного материла 8 8 ...
Организация и проведение опытно-экспериментальной работы
Педагогический эксперимент проводился на базе МБОУ СОШ №73 г. Краснодара. В эксперименте принимали участия учащиеся 5-ых классов. В начале учебного 2012-2013 года мы начали изучение педагогических технологий, в частности здоровьесберегающих. Теоретический анализ литературных источников по теме иссл ...