(-а,0), (0,b), (а,0), (0,-b).
Если эллипс представляет собой окружность, то любая прямая, проходящая через центр окружности, является осью симметрии. Отметим, что центром эллипса является точка пересечения главных осей
Рис. 7
Длины отрезков, образованных пересечением эллипса с главными осями, равны 2а и 2b. Так как 2a > 2b, то главная ось, образующая в пересечении с эллипсом отрезок 2а, называется большой осью эллипса. Другая главная ось называется малой осью эллипса.
Если эллипс задан уравнением (1.4), то при а>b большой осью будет ось Ох, а малой - ось Оу. При b>а большой осью будет ось Оу, а малой - Ох.
Фокусы эллипса располагаются на его большой оси.
2°. Эллипс содержится внутри прямоугольника |x|a,
|у|b (на рис. 6.4 этот прямоугольник не заштрихован). В самом деле, из канонического уравнения (1.4) вытекает, что и , Эти неравенства очевидно, эквивалентны неравенствам |x|a и |y|b.
3°. Эллипс может быть получен посредством равномерного сжатия окружности. Рассмотрим окружность (рис. 6.5), заданную уравнением
(1.16)
Произведем теперь равномерное сжатие плоскости к оси Ох, т.е. такое преобразование, при котором точка с координатами (х, у) перейдет в точку с координатами (), причем х=, а =. Очевидно, при этом преобразовании окружность (1.16) перейдет в кривую, определяемую уравнением
т. е. в эллипс.
5. Гипербола.
Рис. 8
Гипербола
Определение. Гиперболой называется геометрическое место точек плоскости, для которых абсолютная величина разности расстояний до двух фиксированных точек Ft и F2 этой плоскости, называемых фокусами, есть величина постоянная.
Для вывода канонического уравнения гиперболы выберем начало координат в середине отрезка F1F2, а оси Ох и Оу направим так, как указано на рис. 6.2. Пусть длина отрезка F1F2 равна 2с. Тогда в выбранной системе координат точки F1 и F2 соответственно имеют координаты (-с, 0) и (с, 0) Обозначим через 2а постоянную, о которой говорится в определении гиперболы. Очевидно, 2a<2с, т. е. а<.с.
Пусть М-точка плоскости с координатами (х, у) (рис. 6,2). Обозначим через r1 и r2 расстояния MF1 и MF2. Согласно определению гиперболы равенство
|r1 - r2| = 2a (1.7)
является необходимым и достаточным условием расположения точки М на данной гиперболе.
Используя выражения (1.2) для r1 и r2 и соотношение (1.7), получим следующее необходимое и достаточное условие расположения точки М с координатами х и у на данной гиперболе:
|(1.8)
Используя стандартный прием «уничтожения радикалов», приведем уравнение (6.8) к виду
(1.9)
где b2=a2-c2 (1.10)
Мы должны убедиться в том, что уравнение (1.9), полученное путем алгебраических преобразований уравнения (1.8), не приобрело новых корней. Для этого достаточно доказать, что для каждой точки М, координаты х и у которой удовлетворяют уравнению (1.9), величины r1 и r2 удовлетворяют соотношению (1.7). Проводя рассуждения, аналогичные тем, которые были сделаны при выводе формул (1.6), найдем для интересующих нас величин r1 и r2 следующие выражения:
а+, при x>0
Другая информация:
Технология учебно-игровой деятельности
Несмотря на то, что игры в практике обучения используются давно, в психологии, дидактике и методике не существует единого подхода к понятию «игра». Игра рассматривается с разных позиций: 1) как прием обучения, направленный на моделирование реальной действительности; 2) как прием обучения, направлен ...
Особенности школьного экономического образования в профильном обучении
Потребность в профессиональном самоопределении – одна из ведущих потребностей, она выступает как фактор развития личности. Одно из средств удовлетворения этой потребности в современной школе – дифференцированное обучение. В XX в. российская школа накопила немалый опыт в этой области. Достаточно пер ...
Способности как психологический аспект
Одной из самых сложных и интересных проблем психологии является проблема индивидуальных различий. Трудно назвать хоть одно свойство, качество, черту человека, которое не входило бы в круг этой проблемы. Психические качества и свойства людей формируются в жизни, в процессе обучения, воспитания, деят ...