В современном школьном курсе математики ведущим подходом считается генетический с добавлением элементов логического. Формирование понятий и представлений, методов и приёмов в составе функциональной линии в системе обучения строится так, чтобы внимание учащихся сосредотачивалось на:
1) выделенных и достаточно четко разграниченных представлениях, связанных с функцией;
2) установлении их взаимодействия при развёртывании учебного материала.
Выделена система компонентов и установлена связь между ними. В систему входят такие компоненты: 1) представление о функциональной зависимости переменных величин в реальных процессах и математике; 2) представление о функции как о соответствии;3) построение и использование графиков функций, использование графиков функций; 4) вычисление значений функций, определённых различными способами;
Введение понятия ведётся по трём основным направлениям: 1) упорядочение основных представлений о функции; развёртывание системы понятий, характерных для функциональных линий (способы задания и общие свойства функций, графическое истолкование области определения, области значения, возрастания и т. д. на основе метода координат); 2) глубокое изучение отдельных функций и их классов; 3) расширения области приложения алгебры за счёт включения в нею идеи функции и разветвлённой системы действий с функцией.
Первое направление появляется в алгебре ранее остальных. Основной акцент – усвоение учащимися однозначности соответствия аргумента и определяемого по нему значения функции. Из разнообразных способов задания функции чаще всего используется способ задания функции формулой остальные способы задания – подчинённые. Сопоставление различных способов задания вызвано практической потребностью и важно для усвоения всего многообразия понятия функции.
Использование перевода задания функции из одной формы представления в другую – необходимый методический приём приведении понятия функции. Реализация – система заданий, в которых представлены все случаи такого перевода. Например, при отработке формы представления можно рассмотреть задачи:
1. изобразить график функции у=4х+1 на ;
2. проверить, на сколько точна таблица квадратов чисел, взяв несколько значений для аргумента проведя расчёт : х=1.35; 2.44; 9,4; 7; 6,25;
3. по заданным точкам построить график зависимости.
В первом задании построение идёт по точкам, так как первоначально учащиеся не знают вида графика линейной функции. Способ построения графика функции по точкам иллюстрирует задание три, второе задание иллюстрирует связь функциональных представлений с числовой системой. Второй тип заданий – оптимизация представления функции без изменения средств представлений. Типичные задания: упростить формулу, задающую функцию. Цель таких задания – показать, что одна и та же функция может определяться различными формулами. Связь функциональной линии с числовой системой при введении понятия функции осуществляется при вычислении её значения по формуле или словесному описанию. Учащиеся должны понимать, что если о некоторой функции известно, что она определена на множестве , то это значит, что для каждого можно найти соответствующее значение .
Например: Функция задана формулой :. Найти её значение при . Наряду с раскрытием определения понятия уточнения общих функциональных представлений введение понятия функции требует рассмотрения нескольких конкретных примеров функций.
Другая информация:
Особенности развития музыкальных способностей в детском музыкальном театре
Одной из форм развития музыкальных способностей является детский музыкальный театр. Театр – вид искусства, специфика которого заключается в сценическом действии, возникающем в процессе игры актеров перед публикой. Как говорил В.Г.Белинский театр «освежает нашу душу… мощными и разнообразными впечатл ...
Семейный бюджет в системе экономических знаний
Изучая экономические механизмы, созданные человечеством для повышения своего благосостояния, легко упустить из виду, для чего нужна вся экономика как таковая и ради кого она функционирует. Между тем у экономики есть только два «генеральных заказчика» - семья и государство. Изучение семейного бюджет ...
Основание ордена иезуитов, его задача и педагогическая деятельность
Реформация вызвала со стороны католичества самозащиту, в виде целого ряда новых орденов, и в том числе ловкого, интеллигентного и преданного церкви иезуитского ордена. Как известно, орден основан был испанцем Игнатием Лойолой в 1543 году. Задачей его было восстановить силу и величие церкви, подорва ...