Тема «Многогранники», как никакая другая тема школьного курса стереометрии, за исключением, быть может, изучения круглых тел, дает широкие возможности использования различных наглядных средств.
Наглядность является обязательным качеством любого обучения. Путем целенаправленных действий мы формируем в сознании учащегося некоторую систему понятий, отношений между ними. Для того чтобы обучение было успешным, необходимо, чтобы ученик мог воспринимать эту систему и работать с ней. Но для этого, в свою очередь, необходимо предъявить ученику некоторую ее материальную модель. Для этого применяют наглядные средства обучения. Например, если изучается понятие пирамиды, то такой моделью может быть: 1) словесное описание (определение) этого понятия; 2) объемная модель пирамиды (каркасная или сплошная); 3) ее развертка; 4) изображение пирамиды или ее развертки на доске, на бумаге, на экране и т. п. Все перечисленные объекты являются материальными моделями, с той или иной стороны отражающими понятие пирамиды.
Основными наглядными средствами при изучении многогранников являются объемные модели. Такие модели, сделанные из разных материалов, соответствуют различным дидактическим целям.
Так, например, с помощью картонной модели можно показать форму многогранника. Также на таких моделях удобно показать развертку поверхности тела. Но из-за непрозрачности картона уже нельзя использовать картонные многогранники для демонстрации сечения тел и тел, вписанных друг в друга. Стеклянные модели рекомендуется использовать в тех случаях, когда необходимо показать в многограннике сечение или другое вписанное в него геометрическое тело. Деревянные модели отличаются прочностью. Проволочные каркасные модели также находят широкое применение на уроках стереометрии. Они позволяют показать виды, элементы и проекцию многогранника на плоскость (тень модели на листе белой бумаги), сечение многогранника плоскостью, комбинации геометрических тел. Такая модель является связующим звеном между объемной моделью многогранника и чертежом на бумаге. Можно перечислить серии каркасных моделей, которые могут быть использованы на уроке: набор моделей правильных призм и пирамид (полных и усеченных), набор моделей четырехугольных пирамид, вершины которых проектируются в точку пересечения диагоналей основания (кроме основного контура, модель должна иметь высоту, диагональ основания и высоты боковых граней), набор моделей на комбинации многогранников.
Выпускаемые промышленностью модели не всегда могут удовлетворить потребности, возникающие при обучении школьников математике. Поэтому учителя часто прибегают к изготовлению моделей своими силами с привлечением учащихся. Это делается не только в тех случаях, когда в школе отсутствуют необходимая модель, прибор или инструмент, но и когда учитель считает, что имеющаяся модель, прибор не в полной мере способствуют ясному и четкому восприятию изучаемого материала. Внося в модель усовершенствования, учитель привлекает учащихся к изготовлению нового варианта модели. Это содействует получению учащимися более глубоких и прочных знаний, умений применять теоретический материал на практике. Модели как фабричного, так и самодельного изготовления могут быть использованы при введении новых понятий и доказательстве теорем, при решении задач, при выполнении практических и лабораторных работ.
Другим удобным видом учебного оборудования являются резиновые штемпели (штампы) с изображением различных плоских и объемных фигур, графиков, таблиц и т. д. К сожалению, такое средство обучения сейчас редко встречается в школе. При использовании этого вида учебного оборудования достаточно приложить штемпель к штемпельной подушке и прижать его к листу бумаги, чтобы получить нужное изображение, например изображение куба или прямоугольного параллелепипеда. При решении задач, связанных с построением изображений куба или прямоугольного параллелепипеда, учащиеся, воспользовавшись штемпелем, могут быстро получить в тетради правильный чертеж, что дает большую экономию времени. Естественно, применение штемпелей недолжно привести к утрате учащимися навыков вычерчивания фигур. Поэтому учитель должен вначале научить учащихся изображать фигуры на плоскости, а затем применять штемпели на уроке. Штемпели могут использоваться учителем при подготовке многовариантных контрольных заданий. Можно, например, заготовить 35-40 чертежей с изображением прямоугольного параллелепипеда, чтобы затем, проставив размеры, получить набор индивидуальных заданий.
Другая информация:
Сущность и содержание. Понятие игры. Виды игр
Проблемы методов обучения сегодня приобретают все большее значение. Этой проблеме посвящено множество исследований в педагогике и психологии. И это закономерно, так как учение - ведущий вид деятельности школьников, в процессе которого решаются главные задачи, поставленные перед школой: подготовить ...
Характеристика современного состояния проблемы
Определяющим фактором в системе сохранения и развития здоровья подрастающего поколения может стать здоровьеориентированный образовательный процесс в школе. Вместе с тем чрезвычайно широкая трактовка термина «здоровье» создает существенные методологические и технологические трудности в достижении эт ...
Диагностика уровня математического развития детей младшего школьного
возраста
Для проведения экспериментальной работы нами были выбраны 2 «А» и 2 «Б» классы, из которых и сформированы две подгруппы – экспериментальная и контрольная – по 8 человек с приблизительно одинаковым уровнем развития математических представлений. Вначале была проведена диагностика уровня развития дете ...